Стандартное отклонение

Стандартное отклонение — классический индикатор изменчивости из описательной статистики.

Стандартное отклонение, среднеквадратичное отклонение, СКО, выборочное стандартное отклонение (англ. standard deviation, STD, STDev) — очень распространенный показатель рассеяния в описательной статистике. Но, т.к. технический анализ сродни статистике, данный показатель можно (и нужно) использовать в техническом анализе для обнаружения степени рассеяния цены анализируемого инструмента во времени. Обозначается греческим символом Сигма «σ».

Спасибо Карлам Гауссу и Пирсону за то, что мы имеем возможность пользоваться стандартным отклонением.

Используя стандартное отклонение в техническом анализе, мы превращаем этот «показатель рассеяния» в «индикатор волатильности«, сохраняя смысл, но меняя термины.

Что представляет собой стандартное отклонение

Понимание сути стандартного отклонения возможно с пониманием азов описательной статистики. К примеру, мы имеем 2 выборки, у которых среднее арифметическое одинаково и равно 3. Казалось бы, одинаковое среднее делает эти две выборки одинаковыми. Ан-нет! Давайте рассмотрим возможные варианты данных для этих двух выборок:

  1. 1, 2, 3, 4, 5
  2. -235, -103,  3, 100, 250

Очевидно, что разброс (или рассеяние, или, в нашем случае, волатильность) гораздо больше во второй выборке. Следовательно, несмотря на то, что у этих двух выборок одинаковое среднее (равное 3), они совершенно разные в силу того, что у второй выборки данные беспорядочно и сильно рассеяны вокруг центра, а у первой — сконцентрированы около центра и упорядочены.

Но если нам надо быстро дать понять о таком явлении, мы не будем объяснять, как в абзаце выше, а просто скажем, что у второй выборки очень большое стандартное отклонение, а у первой — очень маленькое. Так, у второй выборки стандартное отклонение равно 186, а у первой оно равно 1,6. Разница существенная.

Стандартное отклонение в техническом анализе

Стандартное отклонение используется в техническом анализе не так часто, но оно служит отличным индикатором волатильности (изменчивости). Стандартное отклонение используется для промежуточных вычислений различных индикаторов, таких как, например, Полосы Боллинджера или Ширина Полос Боллинджера.

Но помимо промежуточных вспомогательных вычислений, стандартное отклонение вполне приемлемо для самостоятельного вычисления и применения в техническом анализе. Как отметил активный читатель нашего журнала burdock, «до сих пор не пойму, почему СКО не входит в набор стандартных индикаторов отечественных диллинговых центров«.

Действительно, стандартное отклонение может классическим и «чистым» способом измерить изменчивость инструмента. Но к сожалению, этот индикатор не так распространен в анализе ценных бумаг.

Применение стандартного отклонения

Для любого индикатора нам понадобится переменная, т.е. параметр. В данном случае нам нужен только период n, который указывает, какое количество периодов мы будем включать в вычисление стандартного отклонения.

Для вычисления, мы берем данные закрытия из n периодов назад от последней доступной цены. Т.е. если мы установили период индикатора 20 (достаточно часто используемый период),то мы берем 20 последних данных и оперируем ими для вычисления стандартного отклонения сегодня. Следовательно, для вычисления стандартного отклонения в любой момент времени k, надо взять цены закрытия всех n периодов назад от k.



Вычисление стандартного отклонения

Предупреждаю, что самостоятельное вычисление вам врядли понадобиться, т.к. основные программы обработки данных имеют встроенную функцию вычисления стандартного отклонения. Например, в Microsoft Excel эта функция называется СТАНДОТКЛОН.

Вручную вычислить стандартное отклонение не очень интересно, но полезно для опыта. Стандартное отклонение можно выразить формулой STD=√[(∑(x-x)2)/n], что звучит как корень из суммы квадратов разниц между элементами выборки и средним, деленной на количество элементов в выборке.

Если количество элементов в выборке превышает 30, то знаменатель дроби под корнем принимает значение n-1. Иначе используется n.

Пошагово вычисление стандартного отклонения:

  1. вычисляем среднее арифметическое выборки данных
  2. отнимаем это среднее от каждого элемента выборки
  3. все полученные разницы возводим в квадрат
  4. суммируем все полученные квадраты
  5. делим полученную сумму на количество элементов в выборке (или на n-1, если n>30)
  6. вычисляем квадратный корень из полученного частного (именуемого дисперсией)

Для наглядности, вот пример из таблицы Excel:

Стандартное отклонение (Вычисление на примере индекса ПФТС)

Исходный файл Excel прилагается (.xls 24kb).

В данном примере я взял краткий отрезок исторических данных цен закрытия индекса ПФТС. Для вычислений, дата не нужна, но я решил ее оставить, чтоб вы могли сверить, если хотите. Что действительно важно, это все остальное. Обратите внимание на отдельные данные под темным разделителем: «среднее» и «всего». Есть столбец с ценой закрытия, столбец с разницами данных и среднего, и квадраты этих разниц.

После вычисления квадратов, мы складываем их, полученную сумму делим на количество элементов выборки (т.к. всего элементов 24, что меньше 30) и из полученного честного вычисляем квадратный корень. Результат округляем до целого, и получаем 69.

Важно заметить, что все эти вычисления дадут нам лишь значение индикатора «стандартное отклонение» в последний день, т.е. 26.09.2008, а для каждой другой даты надо проделывать этот комплекс операций отдельно.

Прикладное значение стандартного отклонения

Напомню, что смысл стандартного отклонения заключается в выявлении степени изменчивости инструмента. Т.е. стандартное отклонение не сможет показать аналитику ничего, кроме волатильности.

Важно отметить, что элементы выборки в среднем отличается от среднего значения на ±СО. Т.е. из примера выше, цены закрытия индекса ПФТС в среднем отличаются от среднего значения на ±69.

Из примера выше, отдельно цифра 69 ничего не скажет, т.к надо ее использовать с другими значениями стандартного отклонения в другие периоды. 69 — относительно немалая волатильность, но если в другие периоды стандартное отклонение будет  больше 100, то, естественно, 69 окажется умеренной изменчивостью. Т.е. «все познается в сравнении«.

Вывод

Стандартное отклонение — классический индикатор изменчивости из описательной статистики. Он поможет увидеть, как изменяется волатильность инструмента во времени.

←  →
Система Orphus

Комментариев: 23


-